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Abstract
On the basis of the recently determined crystallographic structure of the
delafossite YCuO2.5, we argue that the Cu–O network has nearly independent
� chains, with however different interactions between the s = 1/2 spins, owing
to the different angles, distances and coordinations of the Cu ions. Although
band-structure calculations are still lacking, motivated by this observation we
study here the sawtooth lattice for different ratios of the base–base and base–
vertex interactions, Jbb/Jbv. By exact diagonalization and extrapolation to the
infinite-size limit, we show that the elementary excitation spectrum is the same
for total spins Stot = 0 and 1, but not for Stot = 2, and has a gap only in
the interval 0.487 42(2) � Jbb/Jbv � 1.53(1). The gap, dispersionless for
Jbb = Jbv, acquires increasing k-dependence as the ratio Jbb/Jbv moves away
from unity, with the minimum energy excitations for k = 0 (k = π) when
Jbb/Jbv < 1 (Jbb/Jbv > 1). Finally, we show that the gap closure is related to
the instability of the dimers in the ground state as the difference between the
interactions increases.

1. Introduction

More than 20 years ago, Shastry and Sutherland (SS) [1] introduced a new class of quantum
topological excitations: isolated defects separating different regions of broken translational
symmetry. Since their proposal, the search for models and real systems showing this behaviour
has not stopped. The typical example is the symmetric zigzag spin ladder, first addressed by
Majumdar and Ghosh (MG) [2], in which nearest-neighbour (NN) triangles sharing a base site
are also vertex–vertex coupled. Its lowest-energy excitations are kinks (K) and antikinks (AK),
defects separating domains corresponding to one or the other of the twofold degenerate ground
states, with similar characteristics and giving rise to a finite gap, �E ≈ 0.234J1 when the
interaction J2 between next-nearest neighbours (NNN) is half that of NN spins J1 [3]. Then
attention turned to the sawtooth or � chain, which consists of coupled s = 1/2 Heisenberg
spins forming triangles aligned in a chain with a common base site, like the zigzag ladder
but without the vertex–vertex coupling. Studies of this lattice [4, 5], all with bonds having
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Cu1 Cu1

Cu2Cu2

O

Figure 1. Sawtooth chains in the triangular Cu planes of the delafossite YCuO2.5. The extra O
ions (white circles) for x = 0.5 are located at the centres of particular triangles of Cu ions, creating
AF superexchange only within these triangles. This gives nearly independent � chains, indicated
by thin black lines. While Cu1 (black circles) adopts tetrahedral coordination with two O ions in
this plane (and with two other O out of the plane), Cu2 (grey circles) adopts triangular coordination
with just one O in this plane. The angles and distances [9] suggest a weaker Jbb interaction between
Cu1–O–Cu1 bonds (bases of the triangles) than for the Cu1–O–Cu2 base–vertex bond Jbv.

the same interaction, have shown remarkable properties: the K–AK symmetry of the MG
model is broken here, yielding however a similar dispersionless reduced gap for the low-lying
excitation modes. Recently, the crossover from the MG model to the symmetric � chain has
been discussed [6].

Despite all this theoretical work, there has to date been no clear physical realization of any
of the various models discussed. However, experimental results that could display quantum
topological excitations of the SS type have recently become available. Specifically, overdoped
RCuO2+x (R = Y, La, etc) delafossites [7] have opened up new possibilities for studying
frustrated hexagonal Cu planes with AF interactions between the Cu2+ ions. Depending
on the O doping, different s = 1/2 effective lattices are obtained, although with weaker
interactions than high-Tc systems, which have comparable bond lengths but 180◦ Cu–O–Cu
angles. Studies [8] of the diluted Kagomé lattices for x = 0.66 predicted interesting properties.
The recent synthesis of orthorhombic 2H single-phase samples of YCuO2.5 has allowed us to
elucidate its detailed structure [9], which appears as a nice realization of the sawtooth lattice
(figure 1). The additional x = 0.5 O ions are located at the centre of alternating sets of
triangles, providing superexchange paths between s = 1/2 spins on nearly independent �

chains. However, the measured angles and distances indicate different interactions between
the two spins on the base Jbb and between the base–vertex NN spins Jbv of the triangles. While
the case Jbb = Jbv has been studied theoretically [4, 5], to the best of our knowledge the case
Jbb �= Jbv has not been considered before.

Therefore, we analyse here the sawtooth lattice for various ratios Jbb/Jbv of these AF
couplings [10]. The Hamiltonian is given by

H = Jbb

N∑

i=1

s2i−1 · s2i+1 + Jbv

N∑

i=1

(s2i−1 · s2i + s2i · s2i+1), (1)
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Table 1. Lowest-energy excitations of the sawtooth lattice for Jbb = Jbv = J with total spin Stot
and wavevector k, after extrapolation to N → ∞. Units of J .

Stot Gap (k = 0) Gap (k = π/2) Gap (k = π )

0 0.2153(8) 0.22(1) 0.216(2)
1 0.2156(2) 0.214(10) 0.216(2)
2 0.46(1) 0.49(8) 0.46(6)

where N is the number of triangles (2N spins) in the chain, and si is the spin-1/2 operator
at site i . There has been no ab initio calculation for the Jbb/Jbv ratio in YCuO2.5. Now, for
either Jbb or Jbv = 0 the system is equivalent to the Heisenberg chain, while for Jbb = Jbv

we retrieve the symmetric � chain studied by Nakamura and Kubo [4] and by Sen et al [5].
Thus, to understand the YCuO2.5 compound, it is important to study the entire evolution of
the elementary excitations from the sawtooth lattice to the Heisenberg chain as a function of
Jbb/Jbv. The transition between these two limits is not obvious: the symmetric � chain has a
dispersionless small gap with K and AK excitations, while the isotropic Heisenberg chain has
no gap and pairs of spinon excitations exhibiting a strongly dispersive spectrum.

2. Calculations and results

We are unable to solve analytically and exactly for the wavefunction and dispersion for
arbitrary Jbb/Jbv, but important features of the spectrum can be obtained with high precision
by exact diagonalization and extrapolation procedures. We diagonalize the spin Hamiltonian
equation (1) via the Lanczos algorithm (all sizes from N = 4–12 triangles) using periodic
boundary conditions. We find that the simplest and one of the best methods for extrapolating
excitation energies to N → ∞ is to take the finite-size term to be a polynomial in 1/N , whose
coefficients are determined by fitting.

To test this procedure, which includes larger clusters than before,we first briefly reconsider
and extend results for the symmetric � chain. When Jbb = Jbv, equation (1) has two degenerate
ground states with N dimers [11]. They may be written as states in which each spin on the
base of a triangle forms a singlet either with the following vertex spin (right, R-dimer) or with
the previous one (left, L-dimer state), that is,

|R〉 =
N∏

i=1

[2i − 1, 2i ], |L〉 =
N∏

i=1

[2i, 2i + 1], (2)

where [i, j ] ≡ (|αiβ j〉 − |βiα j 〉)/
√

2, with αi (βi ) denoting states with sz
i = 1/2 (−1/2) at

site i . These two states are linearly independent and become orthogonal for N → ∞. The
existence of an excitation gap was also rigorously proved [11]. The elementary excitations are
well-separated K–AK-type domain walls separating regions of R- and L-dimers [4, 5]. A K has
a dimer in its triangle, while an AK does not. Curiously, they have very different characteristics
in this system. A K has no excitation energy and is localized, but an AK propagates with kinetic
energy within a region bounded by Ks. As a consequence of the former property the low-lying
excitation spectrum is dispersionless, and owing to the second one, the gap is considerably
reduced compared to the energy of a trivial triplet replacing a singlet dimer of the ground state.

Table 1 displays the gaps thus found for k = 0, π/2, and π for excitations with total spin
Stot = 0, 1 and 2, when Jbb = Jbv = J . Our results confirm the gap to be dispersionless.
The gap for k = 0 and Stot = 1, �E = 0.2156(2)J , agrees with, but is more precise than,
previous estimates [4, 5]. We also find that, within numerical error, the Stot = 0 low-lying
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Figure 2. Low-lying excitation spectra of the sawtooth lattice for Jbb/Jbv < 1. The dashed line
corresponds to the Jbb = Jbv case, while the Jbb = 0 dotted–dashed curve follows the dispersion
of the isotropic Heisenberg chain (see the text).
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Figure 3. The dispersion curve for the gap to Stot = 1 excited states of the sawtooth lattice with
Jbb/Jbv > 1, compared to the Jbb/Jbv = 1 case.

excitations become degenerate with the Stot = 1 gap as N → ∞, as conjectured by Kubo [12].
Furthermore, the spectrum for Stot = 2 appears also to be dispersionless, but with a gap about
twice that for Stot = 1 or 0. This new result is contrary to previous speculation [12] that the
excitation energies for higher spins might converge to the same value as N → ∞.

Figure 2 shows the low-lying triplet (Stot = 1) excitation spectra for Jbb/Jbv � 1 (for
N → ∞). As Jbb decreases, the triplet excitation energy decreases at k = 0 until it vanishes
near Jbb/Jbv ≈ 0.5, while for k = π it goes up. Progressively a stronger k-dispersion appears,
yielding for Jbb = 0 the famous lower-boundary expression [13] for the continuum of excited
triplet states for the isotropic s = 1/2 Heisenberg chain, �EL(k) = (π/2)Jbv| sin k/2| (here
rewritten keeping the k definition for our � chain).

Figure 3 shows the evolution of the Stot = 1 gap dispersion curves for Jbb/Jbv > 1.
The minimum gap is now found for k = π and decreases with increasing interaction ratio.
On the other hand, for very large interaction ratios Jbb/Jbv the low-lying states become nearly
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Figure 4. The gap to the lowest Stot = 1 excited states of the sawtooth lattice versus Jbb/Jbv for
N → ∞. The error is greater for Jbb/Jbv > 1 because states with k = π exist only for even N ,
giving fewer points in the extrapolation. See [10].

degenerate. This can be understood: we are again approaching the Heisenberg chain, though
just for the N spins on the bases of the triangles, while the remaining N spins on the vertex are
only loosely coupled, leading to a complex of 2N nearly degenerate states. Correspondingly,
the discussion of the critical ratio Jbb/Jbv > 1 for the closure of the gap becomes more
complicated than above.

Figure 4 summarizes our main results for the low-lying excitations of the sawtooth chain.
A finite gap is found only for interaction ratios within the interval 0.487 42(2) � Jbb/Jbv �
1.53(1). Thus, the curve is not completely symmetric around Jbb = Jbv. The dispersionless
gap found at this point becomes k-dependent, having its minimum value at k = 0 when
Jbb < Jbv, and at k = π when Jbb > Jbv.

As mentioned above, the ground state |0〉 when Jbb = Jbv consists purely of singlets
between NN spins, the R- or L-dimers; equation (2). In order to get some insight into its
change of character as a function of Jbb/Jbv, we plot in figure 5 the ground state dimerization
fraction Dfrac for Jbb/Jbv � 1, defined as3

Dfrac = |〈0|R〉|2 + |〈0|L〉|2. (3)

We calculate Dfrac for up to 12 triangles; figure 5 shows the importance of the N → ∞
extrapolation. We have tried several extrapolation methods and conclude that the numerical
error in Dfrac is of order 2% or less. In figure 5, Dfrac drops from unity at Jbb = Jbv (perfect
dimerization) towards zero as Jbb/Jbv decreases, showing that the gap reduction is related to
increasing fluctuations of the dimer state. For Jbb/Jbv < (Jbb/Jbv)crit , we find Dfrac � 0.02,
which is our level of numerical error. Thus, as Jbb/Jbv decreases, the sawtooth chain evolves
from a gapped system with nonzero Dfrac to a gapless system with Dfrac equal to zero, within
numerical error.

While our above discussion has been mainly for Stot = 1 excitations, we note that we
have also been able to calculate many features of the spectra for Stot = 0 with a numerical
accuracy of better than a few per cent, finding agreement with the Stot = 1 values in all cases.
For example, we give in table 2 the singlet and triplet excitation energies for k = 0 and π for

3 Since |R〉 and |L〉 are not orthogonal for N finite (but are linearly independent), for N finite we define
Dfrac = |〈0|R′〉|2 + |〈0|L′〉|2, where |R′〉 and |L′〉 are two orthonormal states in the subspace spanned by |R〉 and |L〉.
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Figure 5. The ground state dimerization fraction (see the text) versus the interaction ratio.

Table 2. Excitation energies of singlet and triplet states. Units of Jbv.

Jbb/Jbv (Stot = 0, k = 0) (Stot = 1, k = 0)

0.3 0.000(1) 0.000(1)
0.6 0.000(1) 0.0004(1)
0.8 0.00(5) 0.025(1)
0.9 0.106(2) 0.104(3)
1.0 0.2153(8) 0.2156(2)

Jbb/Jbv (Stot = 0, k = π ) (Stot = 1, k = π )

0.3 1.19(1) 1.204(4)
0.6 0.73(2) 0.743(2)
0.8 0.423(4) 0.425(2)
0.9 0.301(15) 0.304(15)
1.0 0.216(2) 0.216(2)

Jbb/Jbv � 1; they agree within numerical error. We also find agreement for 1 < Jbb/Jbv � 1.5.
Finally, for N → ∞, the critical interaction ratios for singlet [(Jbb/Jbv)crit = 1.51(3)] and
triplet [(Jbb/Jbv)crit = 1.53(1)] gap closure for Jbb/Jbv � 1 are also in agreement with
each other, within numerical error. This provides strong numerical evidence that the lowest
excitation spectra are in fact fourfold degenerate (for N → ∞) for all 0 � Jbb/Jbv � 1.5,
thus generalizing the known results for the isotropic s = 1/2 Heisenberg chain [14] and the
symmetric � chain.

3. Discussion

Now that good samples are available, measurements are in progress to distinguish the different
interactions and to obtain a precise value of the gap, if one exists. It will also be worthwhile
to synthesize single crystals of YCuO2.5 to study the dispersion of the elementary excitations.
Comparison with our results will then allow us to assess the applicability of the sawtooth lattice
model to this system, and if appropriate to determine whether Jbb/Jbv > 1 or <1. We hope
that this first study for Jbb �= Jbv will help with the interpretation of experiments for these
interesting systems.
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